Purine nucleoside phosphorylase from Mycobacterium tuberculosis. Analysis of inhibition by a transition-state analogue and dissection by parts.

نویسندگان

  • L A Basso
  • D S Santos
  • W Shi
  • R H Furneaux
  • P C Tyler
  • V L Schramm
  • J S Blanchard
چکیده

Purine salvage pathways are predicted to be present from the genome sequence of Mycobacterium tuberculosis. The M. tuberculosis deoD gene encodes a presumptive purine nucleoside phosphorylase (PNP). The gene was cloned, expressed, purified, and found to exhibit PNP activity. Purified M. tuberculosis PNP is trimeric, similar to mammalian PNP's but unlike the hexameric Escherichia coli enzyme. Immucillin-H is a rationally designed analogue of the transition state that has been shown to be a potent inhibitor of mammalian PNP's. This inhibitor also exhibits slow-onset inhibition of M. tuberculosis PNP with a rapid, reversible inhibitor binding (K(i) of 2.2 nM) followed by an overall dissociation constant (K(i)) of 28 pM, yielding a K(m)/K(i) value of 10(6). Time-dependent tight binding of the inhibitor occurs with a rate of 0.1 s(-)(1), while relaxation of the complex is slower at 1.4 x 10(-)(3) s(-)(1). The pH dependence of the K(i) value of immucillin-H to the M. tuberculosis PNP suggests that the inhibitor binds as the neutral, unprotonated form that is subsequently protonated to generate the tight-binding species. The M. tuberculosis enzyme demonstrates independent and equivalent binding of immucilin-H at each of the three catalytic sites, unlike mammalian PNP. Analysis of the components of immucillin-H confirms that the inhibition gains most of its binding energy from the 9-deazahypoxanthine group (K(is) of 0.39 microM) while the 1,4-dideoxy-1,4-iminoribitol binds weakly (K(is) of 2.9 mM). Double-inhibition studies demonstrate antagonistic binding of 9-deazahypoxanthine and iminoribitol (beta = 13). However, the covalent attachment of these two components in immucillin-H increases equilibrium binding affinity by a factor of >14 000 (28 pM vs 0.39 microM) compared to 9-deazahypoxanthine alone, and by a factor of >10(8) compared to iminoribitol alone (28 pM vs 2.9 mM), from initial velocity measurements. The structural basis for M. tuberculosis PNP inhibition by immucillin-H and by its component parts is reported in the following paper [Shi, W., Basso, L. A., Santos, D. S., Tyler, P. C., Furneaux, R. H., Blanchard, J. S., Almo, S. C., and Schramm, V. L. (2001) Biochemistry 40, 8204-8215].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase.

Genetic defects in human purine nucleoside phosphorylase cause T-cell deficiency as the major phenotype. It has been proposed that efficient inhibitors of the enzyme might intervene in disorders of T-cell function. Compounds with features of the transition-state structure of purine nucleoside phosphorylase were synthesized and tested as inhibitors. The transition-state structure for purine nucl...

متن کامل

Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase.

Genetic deficiency of human purine nucleoside phosphorylase (PNP) causes T-cell immunodeficiency. The enzyme is therefore a target for autoimmunity disorders, tissue transplant rejection and T-cell malignancies. Transition state analysis of bovine PNP led to the development of immucillin-H (ImmH), a powerful inhibitor of bovine PNP but less effective for human PNP. The transition state of human...

متن کامل

Atomic dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside phosphorylase.

Immucillin-H (ImmH) and immucillin-G (ImmG) were previously reported as transition-state analogues for bovine purine nucleoside phosphorylase (PNP) and are the most powerful inhibitors reported for the enzyme (K(i) = 23 and 30 pM). Sixteen new immucillins are used to probe the atomic interactions that cause tight binding for bovine PNP. Eight analogues of ImmH are identified with equilibrium di...

متن کامل

Inhibition and structure of Toxoplasma gondii purine nucleoside phosphorylase.

The intracellular pathogen Toxoplasma gondii is a purine auxotroph that relies on purine salvage for proliferation. We have optimized T. gondii purine nucleoside phosphorylase (TgPNP) stability and crystallized TgPNP with phosphate and immucillin-H, a transition-state analogue that has high affinity for the enzyme. Immucillin-H bound to TgPNP with a dissociation constant of 370 pM, the highest ...

متن کامل

Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model

Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 40 28  شماره 

صفحات  -

تاریخ انتشار 2001